Conrods

FILTER
LIST
GRID

Conrods: The Power Transmitters of Your Engine

At the heart of every high-performance engine, you’ll find a set of robust and reliable connecting rods, or ‘conrods’ as they are commonly known. These essential components play a pivotal role in transforming the linear motion of the pistons into the rotational force that drives the crankshaft. The history of conrods dates back to the 3rd century AD, where they were first used in a Roman sawmill. Today, they are integral to the operation of every internal combustion engine.

Materials and Manufacturing

Conrods are typically cast or forged from a base of iron or steel. However, in high-performance or racing applications, they may be made from lightweight materials like aluminium or titanium. Forged conrods, in particular, are highly prized in the tuning community for their increased strength and ability to withstand higher boost levels and more aggressive engine tuning. The most premium conrods are machined from a single piece of billet, ensuring maximum strength and durability. The choice of material and manufacturing process depends on the engine’s requirements and the stresses the conrods will be subjected to.

Design and Function

The design of a conrod is dictated by the engine layout. The goal is to keep the rotational forces as symmetrical as possible to minimize vibration. This is achieved by connecting the piston to the crankshaft via a hinge and a clamp with bearings. This setup allows the conrod to transfer the combustion force from the piston to the crankshaft efficiently.

Importance of Quality Conrods

Quality conrods are crucial for the smooth and efficient operation of your engine. They must withstand high pressures and temperatures, and any failure can lead to catastrophic engine damage. Therefore, investing in high-quality conrods, especially forged ones, is a wise decision for any car enthusiast or professional racer.

Choosing the Right Conrods

When selecting conrods for your engine, consider the following factors:

  • Material: Choose a material that can withstand the stresses your engine will produce. Steel and iron are suitable for most applications, but aluminium or titanium, and particularly forged steel, may be necessary for high-performance engines.
  • Design: The design should match your engine layout and provide a smooth transfer of force from the piston to the crankshaft.
  • Quality: Always opt for high-quality conrods from reputable manufacturers. They may cost more, but the investment will pay off in the long run with better performance and reliability.

Conclusion

Conrods are a vital component of your engine, transferring the power of combustion from the pistons to the crankshaft. Whether you’re a car enthusiast looking to upgrade your vehicle or a professional racer seeking the best performance, choosing the right conrods is crucial. At Compare.Parts, we offer a wide range of conrods to suit every need and budget. Explore our selection today and find the perfect conrods for your engine.

Frequently Asked Questions about Conrods

Is it worth fitting a performance air filter?

Fitting a performance air filter can offer several benefits:

  • Improved Airflow: Performance air filters are designed to increase airflow to the engine, which can enhance performance.
  • Better Engine Efficiency: With improved airflow, the engine can operate more efficiently, potentially leading to better fuel economy.
  • Enhanced Throttle Response: Many users report a more responsive throttle, which can improve driving experience.
  • Longer Lifespan: Performance filters are often reusable and can last longer than standard filters, reducing replacement costs over time.
  • Potential Power Gains: Some drivers experience a slight increase in horsepower, although this can vary based on the vehicle and filter type.
However, the actual benefits can depend on the specific vehicle and driving conditions.

What does a higher lift camshaft do?

A higher lift camshaft increases the amount of valve lift, allowing the engine to draw in more air and fuel during the intake stroke. This can lead to improved engine performance in several ways:

  • Increased Airflow: More air entering the combustion chamber can enhance combustion efficiency.
  • Higher Power Output: With better airflow, the engine can produce more power, especially at higher RPMs.
  • Improved Torque: A higher lift can also contribute to increased torque, particularly in performance applications.
  • Enhanced Throttle Response: The engine may respond more quickly to throttle inputs due to improved airflow dynamics.
However, it is important to consider that a higher lift camshaft may require additional modifications to the engine, such as upgraded valve springs and potentially changes to the engine's tuning.

What makes a cam aggressive?

An aggressive camshaft is characterised by several key features that enhance engine performance. These include:

  • Increased Lift: Higher lift allows the engine to draw in more air and fuel, improving combustion efficiency.
  • Longer Duration: A longer duration keeps the intake and exhaust valves open for a greater portion of the engine cycle, allowing for better airflow.
  • Steeper Ramp Rates: Faster opening and closing of the valves can lead to more power at higher RPMs.
  • Overlap: Increased overlap between the intake and exhaust valves can enhance performance by improving scavenging of exhaust gases.
  • Profile Shape: The specific shape of the cam lobes can influence how the engine responds at different RPMs, with aggressive profiles typically favouring high RPM performance.
These characteristics contribute to a camshaft that provides more power and responsiveness, particularly in performance-oriented applications.

What are the cons of camming your car?

Camming your car can enhance performance, but it also comes with several drawbacks:

  • Increased Engine Wear: A camshaft can put additional stress on engine components, leading to faster wear and potential failure.
  • Reduced Fuel Efficiency: Performance cams often result in lower fuel economy due to altered air-fuel mixtures.
  • Compromised Driveability: Cams can affect low-end torque, making the car less responsive at lower RPMs.
  • Noise Levels: Performance cams can increase engine noise, which may not be desirable for all drivers.
  • Potential Emissions Issues: Altered engine performance can lead to higher emissions, potentially causing issues with regulations.
  • Cost of Installation: Upgrading to a performance camshaft can be expensive, including parts and labour.
  • Compatibility Issues: Not all engines are compatible with aftermarket cams, which can limit options.

Do camshafts change engine sound?

Yes, camshafts can change the engine sound. The design and specifications of a camshaft influence the timing and duration of valve openings, which affects the engine's performance and acoustics. Factors that contribute to changes in engine sound include:

  • Lift and Duration: Higher lift and longer duration can create a more aggressive sound.
  • Profile: Different camshaft profiles can alter the exhaust note.
  • Engine RPM: Camshafts designed for higher RPMs may produce a different sound compared to those for lower RPMs.
  • Engine Type: The overall engine configuration (e.g., V8, inline) also affects how camshaft changes impact sound.

Why do cammed cars sound choppy?

Cammed cars sound choppy primarily due to the characteristics of the camshaft profile. Here are the main reasons:

  • Lift and Duration: A camshaft with higher lift and longer duration allows more air and fuel into the engine, creating a more aggressive sound.
  • Overlap: Increased overlap between the intake and exhaust valves can lead to a rougher idle, contributing to the choppy sound.
  • Idle Speed: Cams designed for performance often require a higher idle speed, which can accentuate the choppy noise.
  • Exhaust Note: The changes in exhaust flow dynamics due to the cam profile can alter the exhaust note, making it sound more aggressive and choppy.

Does camshaft affect acceleration?

Yes, the camshaft does affect acceleration. The camshaft controls the timing and duration of the engine's valve openings, which directly influences engine performance. Key factors include:

  • Valve Timing: Proper timing allows for optimal air-fuel mixture intake and exhaust gas expulsion, enhancing engine efficiency.
  • Lift and Duration: Higher lift and longer duration can improve power output at higher RPMs, which can lead to better acceleration.
  • Engine Tuning: A camshaft designed for performance can shift the power band, affecting how quickly the engine accelerates.
In summary, the design and specifications of the camshaft play a crucial role in determining how effectively an engine can accelerate.

Does camming a car make it louder?

Camming a car typically involves installing a performance camshaft, which can indeed make the engine louder. This increase in noise is due to several factors:

  • Increased Airflow: A performance camshaft allows for greater airflow into and out of the engine, which can enhance the exhaust note.
  • Higher RPMs: Cams designed for performance often operate at higher RPMs, producing a more aggressive sound.
  • Exhaust System Interaction: The camshaft can change the way exhaust gases exit the engine, potentially amplifying the sound through the exhaust system.
Overall, while camming a car can lead to a louder engine sound, the extent of the increase will depend on the specific camshaft used and the overall setup of the vehicle.

How much does it cost to replace a camshaft?

The cost to replace a camshaft can vary significantly based on several factors, including the make and model of the vehicle, labour costs, and whether you choose an original equipment manufacturer (OEM) part or an aftermarket part. Typical costs include:

  • Parts: £200 to £1,000
  • Labour: £300 to £800
Overall, the total cost for camshaft replacement can range from approximately £500 to £1,800. Always consult with a mechanic for a precise estimate based on your specific vehicle.

Do camshafts increase horsepower?

Yes, camshafts can increase horsepower. They play a crucial role in controlling the timing and duration of the engine's intake and exhaust valves. Upgrading to a performance camshaft can enhance airflow, improve engine efficiency, and increase power output. Benefits of a performance camshaft include:

  • Improved airflow into and out of the engine
  • Increased torque and horsepower at higher RPMs
  • Better throttle response
  • Optimised engine performance for specific driving conditions
However, the extent of the horsepower increase depends on various factors, including the engine type, other modifications, and tuning.

Built by car enthusiasts, for enthusiasts, Compare Parts is the ultimate marketplace for car enthusiasts. 

Founded in 2008, we've been dedicated to bringing you the best in performance parts. Our marketplace offers top-quality car parts from leading brands worldwide, making it easy to compare car parts and find exactly what you need.
2008-2024 Bravr Ltd is a company registered in England and Wales | Company: 6045335 | VAT ID GB 917 288 301
"Straight roads are for fast cars, turns are for fast drivers" – Colin McRae
My CP
Nothing to see here 😒
Your cart...💰

No products in the cart.

Cart
Theme
homeusercartcrosschevron-leftchevron-right